Environmental impact of irrigation
http://en.wikipedia.org/wiki/Environmental_impact_of_irrigation
From Wikipedia, the free encyclopedia
The environmental impacts of irrigation relate to the changes in quantity and quality of soil and water as a result of irrigation and the effects on natural and social conditions in river basins and downstream of an irrigation scheme. The impacts stem from the altered hydrological conditions caused by the installation and operation of the irrigation scheme.
Contents
An irrigation scheme draws water from groundwater, river or lake and distributes it over an irrigated area. Hydrological, or direct, effects of doing this[1] include reduction in downstream river flow, increased evaporation in the irrigated area, increased level in the water table as groundwater recharge in the area is increased and flow increased in the irrigated area. Likewise, irrigation has had immediate effects on the provision of moisture to the atmosphere, inducing atmospheric instabilities and increasing downwind rainfall,[2] or in other cases has modified the atmospheric circulation, delivering rain to different downwind areas.[3] Increases or decreases in irrigation are a key area of concern in precipitationshedstudies, that examine how significant modifications to the delivery of evaporation to the atmosphere can alter downwind rainfall.[4]
Indirect effects are those that have consequences that take longer to develop and may also be longer-lasting. The indirect effects of irrigation include the following:[1]
The indirect effects of waterlogging and soil salination occur directly on the land being irrigated. The ecological and socioeconomic consequences take longer to happen but can be more far-reaching.
Some irrigation schemes use water wells for irrigation. As a result, the overall water level decreases. This may cause water mining, land/soil subsidence, and, along the coast, saltwater intrusion.
Irrigated land area worldwide occupies about 16% of the total agricultural area and the crop yield of irrigated land is roughly 40% of the total yield.[5] In other words, irrigated land produces 2.5 times more product than non-irrigated land. This article will discuss some of the environmental and socioeconomic impacts of irrigation.
3.1 Reduced river flow
The reduced downstream river flow may cause:
3.2 Increased groundwater recharge, waterlogging, soil salinity
Looking over the shoulder of a Peruvian farmer in the Huarmey delta at waterlogged and salinised irrigated land with a poor crop stand.
This illustrates an environmental impact of upstream irrigation developments causing an increased flow of groundwater to this lower-lying area, leading to adverse conditions.
Increased groundwater recharge stems from the unavoidable deep percolation losses occurring in the irrigation scheme. The lower the irrigation efficiency, the higher the losses. Although fairly high irrigation efficiencies of 70% or more (i.e. losses of 30% or less) can occur with sophisticated techniques like sprinkler irrigation and drip irrigation, or by precision land-levelling for surface irrigation, in practice the losses are commonly in the order of 40% to 60%. This may cause the following issues:
3.3 Reduced downstream river water quality
Owing to drainage of surface and groundwater in the project area, which waters may be salinized and polluted by agricultural chemicals like biocides and fertilizers, the quality of the river water below the project area can deteriorate, which makes it less fit for industrial, municipal and household use. It may lead to reduced public health.
Polluted river water entering the sea may adversely affect the ecology along the sea shore (see Aswan dam).
3.4 Affected downstream water users
Water becomes scarce for nomadic pastoralist in Baluchistan due to new irrigation developments
Downstream water users often have no legal water rights and may fall victim of the development of irrigation.
Pastoralists and nomadic tribes may find their land and water resources blocked by new irrigation developments without having a legal recourse.
Flood-recession cropping may be seriously affected by the upstream interception of river water for irrigation purposes.
Lake Manantali, 477 km², displaced 12,000 people.
3.5 Lost land use opportunities
Irrigation projects may reduce the fishing opportunities of the original population and the grazing opportunities for cattle. The livestock pressure on the remaining lands may increase considerably, because the ousted traditional pastoralist tribes will have to find their subsistence and existence elsewhere, overgrazing may increase, followed by serious soil erosion and the loss of natural resources.[12]
The Manatali reservoir formed by the Manantali dam in Mali intersects the migration routes of nomadic pastoralists and destroyed 43000 ha of savannah, probably leading to overgrazing and erosion elsewhere. Further, the reservoir destroyed 120 km² of forest. The depletion of groundwater aquifers, which is caused by the suppression of the seasonal flood cycle, is damaging the forests downstream of the dam.[13][14]
3.6 Groundwater mining with wells, land subsidence
Flooding as a consequence of land subsidence
When more groundwater is pumped from wells than replenished, storage of water in the aquifer is being mined. Irrigation from groundwater is no longer sustainable then. The result can be abandoning of irrigated agriculture.
The hundreds of tubewells installed in the state of Uttar Pradesh, India, with World Bank funding have operating periods of 1.4 to 4.7 hours/day, whereas they were designed to operate 16 hours/day[15]
In Baluchistan, Pakistan, the development of tubewell irrigation projects was at the expense of the traditional qanat or karez users[10]
Groundwater-related subsidence[16] of the land due to mining of groundwater occurred in the USA at a rate of 1m for each 13m that the watertable was lowered[17]
Homes at Greens Bayou near Houston, Texas, where 5 to 7 feet of subsidence has occurred, were flooded during a storm in June 1989 as shown in the picture[18]
The effects of irrigation on watertable, soil salinity and salinity of drainage and groundwater, and the effects of mitigative measures can be simulated and predicted using agro-hydro-salinity models like SaltMod and SahysMod[19]
4.1 Case studies
4.2 Reduced downstream drainage and groundwater quality
Irrigation can have a variety negative impacts on ecology and socioeconomy, which may be mitigated in a number of ways. These include siting the irrigation project on a site which minimises negative impacts.[29] The efficiency of existing projects can be improved and existing degraded croplands can be improved rather than establishing a new irrigation project[29] Developing small-scale, individually owned irrigation systems as an alternative to large-scale, publicly owned and managed schemes.[29] The use of sprinkler irrigation and micro-irrigation systems decrease the risk of waterlogging and erosion.[29] Where practicable, using treated wastewater makes more water available to other users[29] Maintaining flood flows downstream of the dams can ensure that an adequate area is flooded each year, supporting, amongst other objectives, fishery activities.[29]
5.1 Delayed environmental impacts
It takes time for the prediction of how current irrigation schemes will impact the ecology and socioeconomy of a region. By the time predictions have come out, a considerable amount of time and resources may have already been expended in the carrying out of the current project. When that is the case, the project managers will often only change the project if the impact would be considerably more than they had originally expected.[30]
5.2 Potential benefits outweigh the potential disadvantage
Frequently irrigation schemes are seen as extremely necessary for socioeconomic well-being especially in developing countries. One example of this can be demonstrated from a proposal for an irrigation scheme in Malawi.
They saw that the potential positive effects of the irrigation project that was being proposed “outweigh[ed] the potential negative impacts.” They stated that the impacts would mostly “be localized, minimal, short term occurring during the construction and operation phases of the Project.” In order to help alleviate and prevent major environmental impacts, they would use techniques that minimize the potential negative impacts. As far as the region’s socioeconomic well-being, there would be no “displacement and/or resettlement envisioned during the implementation of the Project activities.” The whole reason that they were doing the irrigation project in the first place was “to reduced poverty levels, improved food security through increased and better crop yields, creation of jobs for the local population and youth, increased household income, and sustainable management of land and water.”[31]
In this example, the irrigation project helped not only socioeconomically, but environmentally by “sustainable management of land and water” for the future as well.